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observable languages) do not exist [13], and hence the typical synthesis has been confined to
supervisors that achieve only supremal normal sublanguages, 2. the synthesis, even for this
non-optimal case, is an NP-complete problem [20].

The on-line approach proposed in the present paper circumvents the complexity problem
in that it bypasses the need to design the full supervisor. This is achieved by relying on
the predesigned full-observation supervisor whose design can be accomplished with linear
complexity even when the specification language is not closed [8]. Specifically, if the size
of the state set of the process G is n and that of the state set of the recognizer of the
specification language K is m, then the design complexity of the full-observation supervisor
is O(] n || m |). The adaptation of the full-observation supervisor to operation under partial
observation is performed stepwise via Algorithm 1. Each step of the algorithm consists of at
most two reachability tests in the state set of the automaton R whose dimension is | n || m |.
These reachability tests can be performed with complexity O(| n || m |) using standard
algorithms.

Thus, the on-line approach provides supervisor computation with stepwise-linear com-

plexity.
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)

Tro = {l’o.l’l}

L3 = {51?0, L1, T, L10 51?11}

Lra = {51?0,51?1,51?2,51?10}

Figure 2:
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Figure 1:

o v, = a,3 = {20, 71, T, T10, T11}, 7 18 Observed

vr3(7) = {2, 2o}
Tr3(y) = {20, v1, 22, 10}
pr(wns(v)) = {1, 0}
Tra = Ex(Y, ¥n3) = {0, 1, T2, 10}

O

It is important to note that the on-line computation of the partial observation super-
visor S, is universal in that it is independent of the specific properties of the underlying
full-observation supervisor S. This, in particular implies that if the supervisor S is imple-
mented on-line, say by a limited lookahead policy ([3]), then the supervisor S, can also be

implemented on line. This last issue will be discussed in detail elsewhere.

4 Complexity considerations

It has been well known for some time that synthesis of supervisors for operation under

partial observation is problematic in that: 1. optimal supervisors (in the sense of supremal
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Compute 2,(0) ={x € X | (F2’' € a,){(0,2') = x}

Compute the unobserved reach (o) of ,(0),

To(o)={z € X | (T2’ € .(0))(Tt € ,,V)E(t,2") = a}.

Compute the control & (2x(0)) = Usez, (o) ¥(2) and apply it.

Compute the target state (set)

§rloyar) = {w € X | (32" € 22(0))(3t € (Vuo /¥ (22(0))))E(H, ) = '}

by removing from the process R all transitions labeled by observable events and all
transitions labeled by events in ¢, (2,(0)), and computing the set of all states reachable

from some state in x.(c) in the resultant process.
Example 3
Consider the process depicted in Figure 1 where R consists of the transitions confined

to the enclosed area while the outgoing transitions (to w3, x4, s, x9) indicate transitions

disabled by the application of the supervisor v, that is,

p(er) = {6}, ¥(w2) = ¥(wr) = {n}, ¥(z6) = {a}
Y(z;) = 0 otherwise.

The partially observed closed loop system is obtained (on-line) by application of Algo-
rithm 1 as depicted in Figure 2:

Sample Calculations

e initialization
zo = {wo, 21}
Ur(w0) = {06}

Tro = {51?0, 51?1}

13



disabled. Next, we compute the control action required by the supervisor S, when at (o).
Upon completion of the computation of the required control action, the events that need not
be disabled at that point are re-enabled. Under this control the closed loop process makes a
(partially observed) transition to the state £.(o, x,). Our basic assumption is that, upon the
occurrance of an observable event o, the temporary disablement of all controllable events can
be accomplished before any other controllable event takes place and that the computation
time of the control at each state is sufficiently short so that the interim step of disablement
of all controllable events is of negligible duration.

The precise computational steps required for on-line implementation of the supervisor S,

given above are as follows:
Algorithm 1 On-line implementation.

Initialization
The initialization consists of computation of the required initial control ¢, (x,) and its

application, and of the computation of the resultant state (set) .

e Compute 7, = {x € X | (I € ¥,,7)&(t,x,) = x} by removing from the process R
all transitions labeled by observable events and computing the set of states reachable

from x, in the resultant process.
e Compute the control ¢;(z,) = U,ez, ¥ (x) and apply it.

e Compute v,, = {x € X | (It € (Zuo/x(2,))")E(t,2,) = a} by removing from the
process R all transitions labeled by observable events and all transitions labeled by
events in ¢,(x,), and computing the set of states reachable from x, in the resultant

process.

General step

Assume that the process is at an arbitrary (known) state . € X, that ¢,(2,) is known
and applied. Assume further that an observable event o € ¥, has just taken place and that
all controllable events have just been temporarily disabled.

The algorithm computes the target state (set) @'z = &:(0, x,) and the control ¢ (z';) and

applies the computed control upon completion of the computation. (Note that T/, = T.(0)

so that &:(2h) = & (2x(0)).)

12



Similar containment relations hold after occurrences of observable events. This leads to a

supervisor S = (R, . ) which is less restrictive (has fewer disablements) than 57 as follows.
Ry =trim(X,, Xoy &ry r0)

where

ey an) = {w € X [ (32" € 27(0))(I € ((Buo/r(2r(0)))7)E(L, ) = 2}

With the modified supervisor Sy, the closed loop language is given by L(S,/G), which is

characterized by the following theorem.

Theorem 5 If supC(FE) # ), then
supCN(E) C L(S:/G) C supC(FE).

Proof
Since supC(F) # 0, S exists such that L(S/G) = supC(FE). By a proof similar to that
of Theorem 2,

L(S./G) C L(S/G) = supC(F).
By Theorem 4,
supCN(E) € L(SL/G) € L(S/G).

O
It is clear that the straightforward implementation of S, is computationally inefficient
because of the exponential blow-up in the size of the state set X, of R, relative to the size
of the state set X of R. However, as we shall see below, the computation of S, need not
be performed explicitly and in advance for all states in X, in order to achieve successful
implementation. Indeed, having computed in advance the supervisor S for implementation
under full observation, we can proceed with the implementation of S, using an on-line
approach.
By an on-line approach to supervisory control we mean that at each stage of an actual
execution, the required control action is computed just for that stage. More specifically,
suppose that the process is running and is currently at a state x,. Suppose further that an

observable event o has just taken place. First, all the controllable events are immediately

11



3 Implementation

In the previous section we have shown how a supervisor v can be modified to a supervisor
~. suitable for operation under partial observation. We have shown the properties and
advantages of v, as compared with a supervisor that is synthesized directly for operation
under the condition of partial observation. In the present section we shall discuss the issue
of algorithmic implementation.

In many respects, the method for implemention of v, depends on how = itself is imple-
mented. Suppose, for example, that 4 is implemented by a recognizer R = (¥, X, ¢, x,) and
a feedback map ¥ : X — 2% such that for each state + € X, ¢(x) is the (smallest) set
of controllable events that must be disabled in G when R is in . Thus, the supervisor is
implemented as the pair S = (R, 1) where each string s€ L(S/G) is represented by a unique
state x€X. Furthermore assume that, without lose of generality, the language generated
by S is equal to the language generated by R, i.e., L(S/G) = L(R) and v disables events
only when it is necessary. Then a direct implementation of the modified supervisor in the
previous section is S’ = (R, ¢,) defined as follows. First, for any subset x, C X, define its

unobserved reach T, as
T, ={r € X | (32 € a,)(F € X)L, 2") = a}.
Then, the generator R/ is given by

R = trim(X,, X, &, 27,

where the state set X, = 2% 2/ = {z,}, and & (0, 2,) = {2, (o)} with z,(0) = {z € X |
(2’ € x5)é(o,2") = x}.
The control feedback map %, is defined for each state . as

Vr(2x) = User, (7).

Notice that the control ¢, restricts the transition behavior of the system and hence
the possible states that the supervised system may visit. For example, since the events in
Yr(2,) = ¥-({x,}) are disabled, the set of initial states possibly reached upon application

of the initial control ¥, (x,) is not «’  but rather

tro = {2 € X | (B € (Suo/thr(w0)E(tr 20) = 2}

10



Theorem 4 If supC'(E) # (), then
SupCN(E) € L(G, )
Proof
Since supC(E) # 0, the supervisors 7 and ~, exist. By Corollary 1,
supN(L(G, 7)) © LG 7).
That is,
supN(supC(B)) € L(G, ).
On the other hand,
supCN(E) C supC(F)
and supCN(E) is normal, implying that
supCN(E) C supN(supC(E)).
Therefore,
SupCN(E) € L(G, )
as claimed. 0

Next we give two examples that demonstrate some properties of the modified supervisors.

The first example below shows that L(G,~,) can contain supC N(F) as a strict subset.
Example 1 Let ¥ =3, = {«a, 5, A}, ¥, = {a} and
L(G) = N TN
E=ap+al
Then supCN(F) = {e}. But L(G,~,) = {e, a}.
O

The following example shows that the language L(G,~,) is not necessarily a maximal

observable sublanguage of supC(L(G)).
Example 2 Let ¥ =Y. = {a, 3, A\, u}, ¥, = 0 and
LG) =TT T A0 T AT 7
E=a+ 3+ p.
Then L(G,~:) = {¢,a}. But note that the language M = {e, a, u} is also observable and
L(G,~,) C M with strict inclusion.




O
From Theorem 1, we can conclude that K, is a closed, controllable and observable sub-
language of K. We show next that K, contains every closed normal sublanguage of K and

hence, in particular,its supremal closed normal sublanguage, denoted by supN(K).
Theorem 3 Let MCK be a closed normal sublanguage. Then MCK .

Proof
We proceed by induction on the length of strings. Clearly

cEM=cck .

Assume that se M =sc K, and consider sc€M. We then have:

soeM
= sEM A socel(G)AN(Vs'eL(G))(r(s') = m(so)=s"€M)
= se K. Nsoe L(G)N(Vs"0 € L(G))(w(s") =n(s)=s"ceM)
= s€ K Nso€ L(G) A (Vs"€s;)(s"0 € L(G) = s"0 € K)
= sel NsoeL(G)N(Vs"€s.)(oEy(s”))
= seK NsoceL(G)NoEy-(s)
= soek,.
O
Corollary 1
supN(K) C K.
O

The above approach to modifying a supervisor is general in that it is independent of the
particular way in which the original supervisor is designed. If the original supervisor v is
designed to solve the supervisory control problem [17] [22], in which L(G,~) = supC(FE),
the supremal controllable sublanguage of the maximal legal language F, then the modi-

fied supervisor 7, generates a language that contains the supremal controllable and normal

sublanguage of F, denoted by supCN(FE) [1] [13]. This fact is established in the following



Theorem 1

ee K,
(Vs € Ky )so € K, & so € L(G)A(Vs' € K)((s'e€s-Ns'0eL(()) = s'o € K).

Proof

By the definition of K, e € K. For all s € K,

so € K,

& so € L(G)No & vx(s)

& so € LGN (Vs € K)s' € s, = o & y(d)

& so€ LGN (Vs €K)s € s, = s'oc€ L(G)— K

& so € LG)N (Vs e K)s € s, = (s'o g L(G)V s'o € K)

& soe L(G)N(Vs' e K)(s' € s, N(s'o € L(G)) = s'o e K

O

Proposition 2 The language L((,~,) is observable with respect to L(G).
Proof Similar to the proof of Proposition 1. O

Theorem 2

L(G, ) C L(G, 7).

Proof

We will prove the theorem by induction on the length of strings. For the empty string,

it is clear that

€€ L(G,v:) = e€ L(G,7).

Suppose that for all strings s of length less that or equal ton, s € L(G,~,) = s € L(G, 7).
We shall show that for all o € X,

so € L(G,v:) = so € L(G, 7).

Indeed,

L S

so € L(G,v,)

s€ L(G,v:) Nso € L(G) N o & vr(sx)

s € L(G,y) ANso € L(G) Ao & Uye,, 7(s")
s € L(G,y)Nso € L(G) N o & ~(s)

so € L(G,7).



2 Modified Supervisors

For a language L over X, the projection map 7 induces a natural equivalence relation £ over

L such that for every two strings s,s" € L
sEs' < 7(s) = n(s).

This equivalence relation partitions L into equivalence classes such that each s € L belongs

to a unique equivalence class s,

sp ={s €L |n(s)=n(s)}
= Lnr~'7(s).

In the quotient language (L) C ¥, each equivalence class s, is represented by a single
string m(s) (s€s,). It is not difficult to see that the main property of supervisors under
partial observation is that they act exactly the same way after all strings in L(G) that
belong to the same equivalence class. This fact gives us an immediate clue how to modify a
given supervisor to one that is suitable for operation under partial observation.

To this end we proceed as follows. Let ~ be a supervisor designed to solve a control
problem under full observation. Without lose of generality, we assume + disables events only

when it is necessary to do so. In other words,

_J {olsoe L(G) - L(G,v)} if s € L(G,7)
7(s)

0 otherwise
Let E be the equivalence relation (as explained above) over the language L(G). The modified
supervisor for partial observation 7, is then given as
771'(8) = Us’Esﬂ— 7(8/)7

that is, v, disables after each string s€L((), every event o€, that is disabled by some
element of s, the equivalence class of s.

It is readily seen that v, acts as a supervisor under partial observation, i.e., as a map
Yot TL(G) — 2%

because it disables exactly the same events after every s€s,.
We turn next to the examination of various properties of the supervisor 7,. Denote

K = L(G,v) and K, = L(G,~,). Then K, is characterized as follows.

6



In [13], a stronger version of observability, called normality is also defined. A sublanguage

K C L(G) is normal (with respect to L(G)) if
(Vs € L(G))r(s) en(K)=>s e K.

It is readily shown that L((,%) is observable with respect to L((G). We prove this fact

below for completeness.
Proposition 1 L(G,¥) is observable with respect to L(G).

Proof

Let s,s" € L(G,4) be such that m(s) = n(s’) and let 0 € ¥ be such that so € L(G,7),
so € L(G). We must show that s'o € L(G,%). Indeed, so € L(G,%) implies that o ¢
F(7ws) or, since w(s) = w(s'), o € Y(xs'). From the definition of L(G,%) it follows (since
e L(GA)Nsoe L(G)No & A(rs)) that s'o € L(G,7), concluding the proof. O

It is algorithmically quite inexpensive to design supervisors under full observation (in
fact, this can be accomplished with complexity O(n) where n is the number of states in
(/). This is not the case when designing a supervisor under partial observation because
of the requirement of observability. Indeed, the supervisor design problem under partial
observation has been shown to be NP-complete [20].

Instead of designing the supervisor from scratch, we propose to modify the supervisor de-
signed under full observation so as to apply under the condition of partial observation. Since
there are many methods to design supervisors with full observation for different problems,
one advantage of our approach is that we do not need to reinvestigate design procedures for
all these different problems. A second major advantage that we shall demonstrate is that
given a supervisor that has been designed for operation under full observation, our modifi-
cation algorithm for operation under partial observation can be implemented on-line with

O(n) complexity.



e € L(G,7)
(Vs € L(G,v))so € L(G,y) & so € L(G) Na & ~(s).

It is well known that given a sublanguage K C L((), there exists a supervisor 4 such that
L(G,~v) = K if and only if K is closed and controllable.
Suppose now that ¥ = ¥,UY,, and let 7 : ¥* — ¥ * be the projection map that erases

from every string the unobservable events. That is, 7 is defined inductively as
T(e) =€

(Vs € ¥*) w(s0) = {

m(s)o if o € X,
w(s) o€V,

Under partial observation, a supervisor is characterized by
A aL(G) — 2%,

that is, 4 is a map defined on the set of projected (observed) strings, and 4 o # is a map
from L(G) to 2¥c. The language L((,7) generated by i under supervision by ¥ is given
inductively by

e € L(G,%)
(Vs e L(G.7))so € L(G,7) & so € L(G) No & A(rs).

The goal of supervisor synthesis is to design a supervisor 4 for a given language K C L(()
such that L(G,%) = K. It can be proved [13] that such a ¥ exists if and only if K is closed,
controllable and observable. The definitions of controllability and observability, as given
below, were introduced in [17] [13].

A sublanguage K C L((G) is controllable (with respect to L(()) if
(Vs € K)(Vo € Xy.)s0 € L(G) = so € K.

Let A C ¥ be any subset. A sublanguage K C L(G) is A-observable (with respect to
L(G)) if

(Vs,s' € K | 7(s) = 7(s")(Vo € A)(soc € KA s'o e L(G) = s'o € K.

K is called observable if it is X-observable.



1 Introduction

Supervisors have been used to solve different problems in discrete event systems, for exam-
ple, supervisory control problem ([17]), supervisory control and observation problem [13],
decentralized control problem [6] [14] [18], coordination problem [12] [15], optimal attraction
problem [2] [3], language convergence problem [10] [21], supervisory control problem with
infinite behavior [16] [19], supervisory control problem with blocking [4], supervisory control
problem under tolerance [11], supervisory control using Petri nets [9] and others [7]. In many
of these problems, the supervisors are obtained under the assumption that all the events are
observable. However, this assumption is often violated in practice, because observing all
events is often impossible or inefficient. In such cases, observability do become an issue. In
general, control problems under partial observation become much more complicated partly
due to the following two facts. (1) Observable languages do not have the nice properties that
controllable languages have. In particular, the supremal observable sublanguage of a given
language may not exist. (2) Computing languages involved in partial observation is generally
of exponential complexity. To overcome these two difficulties, we propose here a new method
to construct a supervisor under partial observation. We first construct a supervisor under
the assumption of full observation. For different problems this may be done differently using
the methods described in the above mentioned references. We then modify the supervisor
to incorporate the constraint of partial observation.

As usual, let ¢ be the discrete event system to be controlled and L((G) the language
generated by . ¥* is the set of all strings over the event set ¥, including the empty string
e. We say that a language L is closed if all the prefixes of L also belong to L. We will only
discuss closed language in this paper. The event set is partitioned into the controllable event
set Y. and the uncontrollable event set ¥,.; ¥ = Y. .UY,.. It is also partitioned into the
observable event set ¥, and the unobservable event set ¥,.,; ¥ = X ,US,,.

A supervisor is used to restrict the behavior of the closed loop system by disabling some
controllable events. Under the condition of full observation, a supervisor is characterized by

a map
v L(G) — 2%,

where for each s € L((), v(s) is the set of events disabled by the supervisor v after the
string s. The language L(G,7) generated by G under supervision by v is given recursively



Abstract

It is well known that the design of supervisors for partially observed discrete-event
systems is an NP-complete problem and hence computationally impractical. Further-
more, optimal supervisors for partially observed systems do not generally exist. Hence,
the best supervisors that can be designed directly for operation under partial observa-
tion are the ones that generate the supremal normal (and controllable) sublanguage.
In the present paper we show that a standard procedure exists by which any super-
visor that has been designed for operation under full observation, can be modified to
operate under partial observation. When the procedure is used to modify the optimal
full-observation supervisor (i.e., the one that generates the supremal controllable lan-
guage), the resultant modified supervisor is at least as efficient as the best one that
can be designed directly (that generates the supremal normal sublanguage). The su-
pervisor modification algorithm can be carried out on-line with linear computational
complexity and hence makes the control under partial observation a computationally

feasible procedure.

Key words: discrete event systems, supervisory control, partial observation, on-line con-

trol.
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